Assessment of the oxygen reactivity in a gas storage facility by multiphase reactive transport modeling

Irina Sin, Laurent De Windt, Camille Banc, Mines Paris, PSL University David Dequidt, Anélia Petit, Storengy

Journée Thermodynamique du Sous-Sol SFGP, 12/07/2022

Oxygen		vi	
000000	0		

Outline

Oxygen reactivity

- Context
- Gas-water-rock interactions (0D)
- Radial 1D model
- 2D model

2 HYTEC & PGT

Oxygen reactivity ••••••

HYTEC & PGT

Conclusions 00

Context: aquifer gas storage facility

- 1) Caprock
- 2) Reservoir
- 3) Surface facilities
- 4) | Injection and withdrawal wells
- 5) Monitoring wells
- 6) Monitoring wells of the upper aquifer
- 7) Upper aquifer
- 8) Cushion gas with O2-depleted air

storengy

Une société de GDF SVez

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ のへで 3/16

Oxygen	reactivity
00000	0

Gas-water-rock interactions: observations

Oxygen	reactivity
000000	0

Conclusions 00

MINES PARIS

4/16

æ

イロト イヨト イヨト イヨト

Gas-water-rock interactions: observations

Oxygen	reactivity
000000	0

Gas-water-rock interactions: model

Gas-water-rock interactions: batch results

▶ Available data (borehole water sampling and gas composition before and after injection) are used to establish the model.

storenav

æ

イロト イヨト イヨト イヨト

PSI ★

6/16

MINES PARIS

- Representation of major mechanisms vs site data
- ▶ Closed system \rightarrow production of CO₂ is overestimated
- Reactive transport model is needed.

HYTEC & PGT

Conclusions 00

Radial 1D multiphase reactive transport model

HYTEC & PGT

Conclusions 00

Radial 1D multiphase reactive transport model

HYTEC & PGT

Radial 1D multiphase reactive transport model: field factor

Conclusions 00

Radial 2D multiphase reactive transport model

▶ 180 days

HYTEC reactive transport code

What physical and chemical processes?

Isotopic fractionation

van der Lee et al., Computers & Geosciences, 2003

Solubility of real gases

Fugacity – activity approach for gas-water-salt-rock systems

- K^H , BIP and EOS parameters adapted to non-ideal gases regarding P and T.
- Helgeson-Kirkham-Flowers eq. for apparent molar volume; b-dot, SIT models.
- Analytical solution for the PR-type EOS models.
- Group contribution structure, easy application for mixtures.
- ANR GAZ ANNEXES, SIGARRR, FLUIDSTORY

Corvisier et al., GHGT-11 2013, GHGT-12 2014. Chabab 2021. Corvisier&Sin, GHGT-14, 2018. Sin&Corvisier, RiMG 85, 2019.

Oxygen reactivity HYTEC & PGT 0000000 00000

PSI ★

12/16

Reactive multiphase flow

Reactive transport and geochemical speciation codes since 1999

Coupling methods

- Operator splitting
- Flexibility
- CHESS
- Multiphase reactive transport

- Real mixtures
- Fluid properties

Sin, Lagneau and Corvisier, Adv. in Water Resources 100, 2017.

 Oxygen reactivity
 HYTEC & PGT
 Conclusions

 000000
 00000
 00

 HYTEC reactive transport code
 00

What applications?

HYTEC & PGT 00000 Conclusions 00

Consortium PGT

Since 2000, **PGT**

- ▶ shared funding
- \blacktriangleright shared scientific research
- shared expertise

PGT V 2020 - 2023

Oxygen reactivity	HYTEC & PGT	Conclusions
0000000	00000	•0

Assessment of the oxygen reactivity in a gas storage by multiphase reactive transport

- ▶ 10 yr field data shows effects of injecting O₂-depleted air into aquifer gas storage: oxygen depletion, CO₂ appearance, pH decreases from 8 to 6 returning to the initial state after 3 years.
- ▶ Data were analyzed and the multiphase reactive transport model was built based on the field data. From batch to reservoir scales.
- ▶ Gas-water-rock reactive sequence was reproduced by the model: oxydation of pyrite, acidification, calcite buffering, gypsum and goethite precipitation, CO₂ exsolution.
- \blacktriangleright Pyrite kinetics is a significant factor. Damköhler number derived for O_2 reactivity and pyrite kinetics explains gas changes.
- ▶ The developed model could be used as a workflow for gas storage facilities (e.g., biomethane, compressed air, and CO₂).

Oxygen reactivity 0000000	HYTEC & PGT 00000	Conclusions 0•
On-going work		

Camille Banc, Multiphase reactive transport modeling of oxygen effect on deep gas storage aquifers, 12 July 2022

