ÉTUDE DE LA DISSOLUTION DE L'HYDROGÈNE DANS LA SAUMURE DANS LE CADRE DU STOCKAGE EN NAPPE AQUIFÈRE

Dr. Salaheddine CHABAB
Pr. Pierre CÉZAC
Pr. Guillaume GALLIERO
Halla KERKACHE (PhD student)
Dr. Marion DUCOUSSO
Dr. Marie POULAIN
Post-doc (bientôt)

Chaire junior HYDR
Lancée en avril 2021
Durée : 5 ans
RESEARCH PROJECT: JUNIOR CHAIR HYDR

Scope
✓ H_2 (+ NG and/or CO$_2$) mobility in Aquifers
✓ H_2 Storage, Natural H_2 exploration, and Geothermal energy

Framework (E2S)
✓ HYDR Junior Chair (S. Chabab)
✓ Exps + Mol Sim + EoS Models
✓ LFCR + LATEP + ProSim + IFPEN

Activities/Projects
- PhD (2021-2024, H. KERKACHE): Solubility + Diffusion in brine and clay. Mol Sim + exps
- PDRA (2022-2024, ProSim): Advanced Modeling
- Implementation in ProSim Tools
Multi-scale parameters relevant in Underground Hydrogen Storage

Underground hydrogen storage (UHS)

Influencing factors

Solid properties
- Absolute permeability (k_a);
- Effective porosity ($\phi_{\text{effective}}$);
- Effective stress ($\sigma_{\text{effective}}$).

Fluid properties
- Density (ρ);
- Viscosity (μ);
- Fluid-fluid interfacial tension (γ_{FF});
- Solubility;
- Diffusivity.

Solid-fluid interactions
- Wettability;
- Solid-fluid interfacial tension (γ_{SF});
- Capillary pressure (P_c);
- Relative permeability (k_r);
- Mobility ratio (M);
- Saturation (S);
- Adsorption-desorption;
- Chemical reactions;
- Biology/bacteria.

Fluid properties

- Gas solubility
- Water content in gas phase
- Diffusion coefficient
- IFT (MS)

➔ Estimation of storage capacities and losses by dissolution
➔ Design / Simulation of surface facilities (e.g. gas dehydration after withdrawal)
➔ Gas reactivity study
➔ Estimate the amount of cushion gas
REVIEW OF AVAILABLE H₂ SOLUBILITY DATA: INCONSISTENCIES

- Only 2 experimental studies (P > P_{atm}) :
 - Chabab et al. 2020 (capillary sampling + GC at known T/P)
 - Torín-Ollarves & Trusler 2021 (bubble-point pressure at known T/x)
- 1 MS study: Lopez-Lazaro et al. 2019

- Large deviations (up to 30%) between the reported data

=> Interest to conduct more studies: Experimental and Molecular Simulation!
Characterization of H_2 (+ gas) dissolution in aquifers

Apparatus for measuring gas solubility in liquids: presentation and validation of the protocol
Laboratory tests (LaTEP lab)
Protocol development and validation

Characterization of H₂ (+ gas) dissolution in aquifers

Adaptation of an existing apparatus
- Old analytical technique: potentiometric titration
- **New analytical technique**: Volumetric & gravimetric

- Verification of pressure equipment
- Change of fluid: Change from a "Group 2 gas" fluid to a **"Group 1 gas"** fluid
CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

Sample collection in the Flash pycnometer

Flash pycnometer

Equilibrium Cell

Gasometer

+ GC (if gas mixture)
Sampling and analysis

\mathbf{m}_0, \mathbf{m}_1, \mathbf{m}_2

Sampling

Degassing
Validation of the apparatus on the CO$_2$+H$_2$O system

New data vs Literature data (for validation purpose)

Method 1: Volumetric determination

<table>
<thead>
<tr>
<th>Sample</th>
<th>P (MPa)</th>
<th>T (K)</th>
<th>GLR (Nm3/m3)</th>
<th>Sample size (g)</th>
<th>m_{Gas} (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt1</td>
<td>4.57</td>
<td>321.55</td>
<td>15.81</td>
<td>62.85</td>
<td>1.96</td>
</tr>
<tr>
<td>Pt2</td>
<td>4.65</td>
<td>323.45</td>
<td>15.71</td>
<td>16.40</td>
<td>0.48</td>
</tr>
<tr>
<td>Pt3</td>
<td>4.63</td>
<td>323.45</td>
<td>15.65</td>
<td>26.82</td>
<td>0.81</td>
</tr>
<tr>
<td>Pt4</td>
<td>7.53</td>
<td>323.15</td>
<td>22.95</td>
<td>36.15</td>
<td>1.58</td>
</tr>
<tr>
<td>Pt5</td>
<td>10.30</td>
<td>324.75</td>
<td>26.13</td>
<td>10.47</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Method 2: Gravimetric determination

Repeatability / reproducibility check
CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

Verification of the non-dependence on the sample size

$X\text{CO}_2$ vs. sample size

$P=\left[45.7 - 46.5\right]$ bar / $T=\left[48 - 50\right] ^\circ \text{C}$
Measuring the H_2 dissolution in water and brine
CHARACTERIZATION OF H$_2$ (+ GAS) DISSOLUTION IN AQUIFERS

Measurements of H$_2$ solubility in pure H$_2$O:

➔ 8 equilibrium points at 50°C (7 – 20 MPa)

- Results consistent with literature data
- Due to the low H$_2$ solubility, measurements are easier at high-pressure (better repeatability and less uncertainty)
Characterization of H₂ (+ gas) dissolution in aquifers

Measurements of H₂ solubility in 1m NaCl brine:
8 equilibrium points at 50°C (10 – 20 MPa)

- Closer to Torín-Ollarves & Trusler 2021 than Chabab et al. 2020 data
- Torín-Ollarves & Trusler 2021 and this work expect a lower salting-out than that reported by Chabab et al. 2020
Studying the H_2 solubility using Monte Carlo simulation
WHAT IS AND WHY MOLECULAR SIMULATION?

- High-performance computing (HPC)
- Force field
- Statistical method (Monte Carlo)
- Newton’s law of motion (Molecular Dynamics)

• 2 tools are used for the calculation of H₂ solubility by performing Monte Carlo simulations: **Towhee** and **Brick-CFCMC**

![MCCCS Towhee](image1)

![Brick-CFCMC](image2)

• Model choice:

Pure H₂ model: Alavi, Marx

Pure H₂O model: SPC/E, TIP4P/2005

• Use of different methods for the calculation of solubility
Molecular Simulations: Force Fields

H₂

<table>
<thead>
<tr>
<th>Model/atom</th>
<th>q⁺ (e)</th>
<th>q⁻ (e)</th>
<th>ε (K)</th>
<th>σ (Å⁺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alavi 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-H₂</td>
<td>0,4932</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M-H₂</td>
<td>-</td>
<td>-0,9864</td>
<td>34,3</td>
<td>3,038</td>
</tr>
<tr>
<td>Marx 1992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-H₂</td>
<td>0,4680</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M-H₂</td>
<td>-</td>
<td>-0,9360</td>
<td>36,7</td>
<td>2,958</td>
</tr>
</tbody>
</table>

H₂O

<table>
<thead>
<tr>
<th>Model/atom</th>
<th>q⁺ (e)</th>
<th>q⁻ (e)</th>
<th>ε (K)</th>
<th>σ (Å⁺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPC/E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-</td>
<td>-0,8476</td>
<td>78,175</td>
<td>3,166</td>
</tr>
<tr>
<td>H</td>
<td>0,4932</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TIP4P/2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>-</td>
<td>-</td>
<td>93,196</td>
<td>3,1589</td>
</tr>
<tr>
<td>H</td>
<td>0,5564</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Q</td>
<td>-</td>
<td>-1,1128</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

EVALUATION OF FORCE FIELDS : PURE HYDROGEN H₂

- **At 160K**: Among the two models tested, the Alavi model captures well the compressibility factor ($\text{AAD}_{\text{Alavi}}=1.5\%$) at low temperature and so the quantum effects.

- **At 400K**: The model of Marx predict well the compressibility factor ($\text{AAD}_{\text{Marx}}=0.49\%$). However, Alavi is less accurate at high temperature ($\text{AAD}_{\text{Alavi}}=2.17\%$).

Storage conditions in aquifers $T=[293-373K]$, $P[50-500\text{bars}]$
Evaluation of Force Fields: Pure Hydrogen H_2 at 323 K

- **At 323K**: all the models predict well the compressibility factor, the AAD obtained are less than 1. ($\text{AAD}_{\text{Alavi}}=0.97\%$, $\text{AAD}_{\text{Marx}}=0.53\%$)
EVALUATION OF FORCE FIELDS: PURE WATER H₂O
THE DIFFERENT METHODS FOR THE CALCULATION OF SOLUBILITY

- **H_i:** The solubility of hydrogen in water/brine can be calculated using the **Henry constant**, which is related to the residual chemical potential of the solute i at infinite dilution μ_i^∞:

 \[
 H_i = \rho k_B T \exp(\mu_i^\infty / k_B T)
 \]

 where k_B is the Boltzmann constant, T the temperature, ρ the density of the solvent.

 μ_i^∞: from molecular simulation (MSMC: 1 boxe-NPT ensemble + widom insertion)

- **using Gibbs ensemble** (2 boxes - NPT ensemble)

- **Equality of chemical potentials:** NPT simulations => plot the chemical potential as a function of hydrogen composition => the intersection of the two curves (liquid and vapor) represents the solubility of hydrogen at the fixed conditions.

Table: NPT simulations

<table>
<thead>
<tr>
<th>N simulations</th>
<th>H_2</th>
<th>H_2O</th>
<th>H_2O</th>
<th>H_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>600</td>
<td>1</td>
<td>730</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>600</td>
<td>2</td>
<td>730</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>600</td>
<td>...</td>
<td>730</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>600</td>
<td>...</td>
<td>730</td>
<td>...</td>
</tr>
</tbody>
</table>

Graph: Chemical potential ($\mu_{\text{excess},i}$) vs. composition (x_i or y_i)
At high temperature (T>353K), the SPC/E model does not capture well the water density => test a new force field for water: TIP4P/2005
HENRY COEFFICIENT- \(H = f(T) \)

Effect of density on the qualitative representation of \(H \) vs. \(T \)

By fixing the density (exp) or by using a suitable model for water density (TIP4P/2005), the results are qualitatively much improved (\(H \) vs. \(T \))

What can be done to quantitatively improve predictions?
- Using the **Marx** model for H$_2$ (also used by Lazaro et al. 2019, IFPEN) significantly **improves** the predictions.
SOLUBILITY (x_{H_2}) FROM HENRY COEFFICIENT

$$H_{H_2} = \frac{P \cdot \varphi_{H_2} \cdot y_{H_2}}{x_{H_2} \cdot Po_{yH_2}(P,T)} \quad with: \quad Po_{yH_2}(P,T) = \exp(\vartheta_{H_2}^{\infty} \frac{P - P^{sat}}{RT})$$

$$x_{H_2} = \frac{P \cdot \varphi_{H_2} \cdot y_{H_2}}{H_{H_2} \cdot Po_{yH_2}(P,T)}$$

P: Total pressure
$\varphi_{H_2}(T,P)$: fugacity coefficient of H_2 in the vapor phase
y_{H_2}: H_2 content in the vapor phase
$Po_{yH_2}(T,P)$: Poynting factor
$\vartheta_{H_2}^{\infty}$: partial molar volume of H_2 at infinite dilution

$\vartheta_{H_2}^{\infty} = f(T)$, It is assumed that $\vartheta_{H_2}^{\infty} \neq f(P)$

- From the literature (available only at $T=298.15^\circ \text{C}$ and $P=1 \text{ bar}$)
- From molecular simulation
SOLUBILITY (x_{H2}) FROM HENRY COEFFICIENT

$xH2$ calc [frac mol] vs P [bar] for 323K.

Different data sets and models are plotted:
- Wiebe et al.
- Trusler et al.
- Chabab et al.
- this work: Alavi2005/SPCE - Brick
- this work: Alavi-TIP4P/2005 - Brick
- this work: Marx-TIP4P/2005 - Brick
- Rahbari et al.: Marx/TIP4P/2005 - Brick
Thermodynamics modeling of the $\text{H}_2 + \text{H}_2\text{O} + \text{NaCl}$ system
I) Symmetric approach (phi-phi)

\[x_i \Phi_i^{Liq} = y_i \Phi_i^{vap} \]

1) Soreide and Whitson (SW) EoS
 - Peng-Robinson EoS with different BIPs (T and salinity dependent) for liquid and gas phases and a specific alpha-function for brine.
 - Recent parameters from Chabab et al. 2021

II) Asymmetric approach (gamma-phi)

3) Using Henry's constant

\[x_i^{aq} y_i^{aq} H_i^g (T, P_{sat}) \exp \left(v_i^\infty \frac{P - P_{sat}}{RT} \right) = y_i^g \varphi_i^g P \]

4) Duan-type model

\[\mu_i^{L(0)} + RT \ln(y_i) + RT \ln(x_i) = \mu_i^{v(0)} + RT \ln(y_i P) + RT \ln(\varphi_i) \]
THERMODYNAMICS MODELING OF THE $\text{H}_2 + \text{H}_2\text{O} + \text{NaCl}$ SYSTEM

$T = 323.15 \text{ K}$

$\text{H}_2 + \text{H}_2\text{O}$

![Graph](image1)

$\text{H}_2 + \text{H}_2\text{O} + 1\text{m NaCl}$

![Graph](image2)
1) Salting-out effect of CH$_4$, N$_2$, O$_2$, and H$_2$ in 1m NaCl brine

<table>
<thead>
<tr>
<th></th>
<th>CH$_4$</th>
<th>O$_2$</th>
<th>N$_2$</th>
<th>H$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100^\ast(1-x_{\text{in brine}}/x_{\text{in water}})$</td>
<td>25.35</td>
<td>25.38</td>
<td>25.24</td>
<td>17.18 (This work)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.25 (Torín & Trusler 2021)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24.28 (Chabab et al. 2020)</td>
</tr>
</tbody>
</table>

2) Gas solubility dependencies:

- Intermolecular forces (HB, e.g. CO$_2$)
- Coulombic interactions
- Molecule size
- Polarizability

(To go deeper, see Battino, R., & Seybold, P. G. (2011). The O$_2$/N$_2$ Ratio Gas Solubility Mystery.)
CONCLUSIONS

Summary

• Importance of thermophysical properties for UHS
• Impact of density and chemical potential on solubility prediction (MC simulation)
• Different approaches for the calculation of solubility
• Predictive capacity of MS
• Salting-out effect
• Gas solubility dependencies

Upcoming work

• Mixed-gas co-solubility (cushion gas, underground bio-methanation, etc.)
• H₂ diffusivity in brine
• Interfacial tension of H₂/mixed gas with brine (short/medium term)
• Impact of clay (long term perspective)
Thank you for your attention!

Acknowledgements

LaTEP lab (UPPA)
Pierre CÉZAC
Marie POULAIN
Marion DUCOUSSO

LFCR lab (UPPA)
Guillaume GALLIERO
Hai HOANG
Halla KERKACHE

External collaborators
Olivier BAUDOUIN (ProSim)
Colleagues from IFPEN
Christophe COQUELET (Mines)
Additional slides
Overview of the different types of energy storage

Principal types of underground gas storage

Ref: J.I.T. Force (2016), Underground natural gas storage: Integrity and safe operations
Effect of degassing in geothermal processes:

- Reducing the process efficiency
- pH change: salt (e.g., calcite-CaCO3) scaling
- Causing undesired GHG emissions

- Gas breakout depth
- Working pressure in surface facilities
APPLICATION TO DEGASSING IN GEOTHERMAL PROCESSES

✓ Duhring lines of equal Gas solubility in different brines
✓ Mutual Solubilities of Gas-Brine (Single or Mixed Salts)
✓ Mixed-gas cosolubility

Prediction of:

✓ Bubble-Point Pressure and

✓ GHG Emission Rate (g-eqCO2/kWh) in the Upper Rhine Graben Geothermal Sites

Selected models:

❖ Phase equilibria: EoS (Søreide and Whitson) with new parameters

❖ GLR conversion: GERG-2008 for gas, Al Ghafri’s correlation for brine