

ÉTUDE DE LA DISSOLUTION DE L'HYDROGÈNE DANS LA SAUMURE DANS LE CADRE DU STOCKAGE EN NAPPE AQUIFÈRE

Chaire junior HYDR

Lancée en avril 2021

Durée : 5 ans

Dr. Salaheddine CHABAB Pr. Pierre CÉZAC Pr. Guillaume GALLIERO Halla KERKACHE (PhD student) Dr. Marion DUCOUSSO Dr. Marie POULAIN Post-doc (bientôt)

Scope

- H₂ (+ NG and/or CO₂) mobility in Aquifers
- ✓ H₂ Storage, Natural H₂ exploration, and Geothermal energy

Framework (E2S)

- ✓ HYDR Junior Chair (S. Chabab)
- ✓ Exps + Mol Sim + EoS Models
- ✓ LFCR + LATEP + ProSim + IFPEN

Activities/Projects

- PhD (2021-2024, H. KERKACHE): Solubility + Diffusion in brine and clay. Mol Sim + exps
- PDRA (2022-2024, ProSim): Advanced Modeling
- o Implementation in ProSim Tools

Multi-scale parameters relevant in Underground Hydrogen Storage

Ref : Pan et al. (2021). Advances in Colloid and Interface Science.

RESEARCH PROJECT: JUNIOR CHAIR HYDR

- → Estimation of storage capacities and losses by dissolution
- → Design / Simulation of surface facilities (e.g. gas dehydration after withdrawal)
- ➔ Gas reactivity study
- → Estimate the amount of cushion gas

REVIEW OF AVAILABLE H₂ SOLUBILITY DATA: INCONSISTENCIES

- Only 2 experimental studies (P > P_{atm}) :
 - Chabab et al. 2020 (capillary sampling + GC at known T/P)
 - Torín-Ollarves & Trusler 2021 (bubble-point pressure at known T/x)
- 1 MS study: Lopez-Lazaro et al. 2019

- Large deviations (up to 30%) between the reported data
- => Interest to conduct more studies: Experimental and Molecular Simulation !

4

Apparatus for measuring gas solubility in liquids: presentation and validation of the protocol

CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

Laboratory tests (LaTEP lab) Protocol development and validation

_

Sample collection in the Flash pycnometer

apave

Potentiometric titration

CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

+ GC (if gas mixture)

Sample collection in the Flash pycnometer

Sampling and analysis

m₀

 \mathbf{m}_1

 m_2

Validation of the apparatus on the CO_2+H_2O system

New data vs Literature data (for validation purpose)

Method 1 : Volumetric determination

Method 2 : Gravimetric determination

	P (MPa)	Т(К)	GLR (Nm3/m3)	Sample size (g)	m _{Gas} (g)	
Pt1	4.57	321.55	15.81	62.85	1.96]
Pt2	4.65	323.45	15.71	16.40	0.48	-
Pt3	4.63	323.45	15.65	26.82	0.81	
Pt4	7.53	323.15	22.95	36.15	1.58	
Pt5	10.30	324.75	26.13	10.47	0.48	

CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

Verification of the non-dependence on the sample size

Measuring the H₂ dissolution in water and brine

CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

repeatability and less uncertainty)

CHARACTERIZATION OF H_2 (+ GAS) DISSOLUTION IN AQUIFERS

expect a lower salting-out than that reported by Chabab et al. 2020

Studying the H₂ solubility using Monte Carlo simulation

- High-performance computing (HPC)
- Force field
- Statistical method (Monte Carlo)
- Newton's law of motion (Molecular Dynamics)

Ref: Lachet, Véronique. "La simulation moléculaire: un outil au service de l'industrie." l'actualité chimique 340 (2010): 22.

 2 tools are used for the calculation of H₂ solubility by performing Monte Carlo simulations : <u>Towhee</u> and <u>Brick-CFCMC</u>

Model choice :

Pure H₂ model: Alavi, Marx Pure H₂O model: SPC/E, TIP4P/2005 Binary mixture : Alavi_SPC/E - Alavi2005_TIP4P/2005 - Marx_TIP4P/2005 + Lorentez-Berthelot for mixing rule.

• Use of different methods for the calculation of solubility

MOLECULAR SIMULATIONS: FORCE FIELDS

Model/atom	q+ (e)	q- (e)	ε (Κ)	σ (A°)	
Alavi 2005					
H-H ₂	0,4932	-	-	-	
M-H ₂	-	-0,9864	34,3	3,038	
Marx 1992					
H-H ₂	0,4680	-	-	-	
M-H ₂	-	-0,9360	36,7	2,958	

Ref: Vinš, Václav, et al. "Molecular simulations of the vapor–liquid phase interfaces of pure water modeled with the SPC/E and the TIP4P/2005 molecular models."

				H ₂ O	
Model/atom	q+ (e)	q- (e)	ε (Κ)	σ (A°)	
SPC/E					
0	-	-0,8476	78,175	3,166	
н	0,4932	-	-	-	
TIP4P/2005					
0	-	-	93,196	3,1589	
н	0,5564	-	-	-	
Q	-	-1,1128	-	-	

EVALUATION OF FORCE FIELDS : PURE HYDROGEN H_2

• <u>At 160K:</u> Among the two models tested, the Alavi model captures well the compressibility factor (AAD_{Alavi}=1,5%) at low temperature and so the quantum effects.

 <u>At 400K</u>: The model of Marx predict well the compressibility factor (AAD_{Marx}=0,49%), However, Alavi is less accurate at high temperature(AAD_{Alavi}=2,17%).

 <u>At 323K:</u> all the models predict well the compressibility factor, the AAD obtained are less than 1.(AAD_{Alavi}=0,97%, AAD_{Marx}=0,53%)

SPC/E

Evaluation of force fields : pure water H_2O

• <u> H_i </u>: The solubility of hydrogen in water/brine can be calculated using the Henry constant, which is related to the residual chemical potential of the solute i at infinite dilution $\mu i \infty$:

 $H_i = \rho k_B T \exp(\mu_i^{\infty} / k_B T)$

where k_B is the Boltzmann constant, T the temperature, ρ the density of the solvent. μ_i^{∞} : from molecular simulation (MSMC: 1 boxe-NPT ensemble + widom insertion)

- using Gibbs ensemble (2boxes -NPT ensemble)
- Equality of chemical potentials: NPT simulations => plot the chemical potential as a function of hydrogen composition => the intersection of the two curves (liquid and vapor) represents the solubility of hydrogen at the fixed conditions

HENRY COEFFICIENT- H=F(T)

 At high temperature (T>353K), the SPC/E model does not capture well the water density => test a new force field for water: TIP4P/2005

HENRY COEFFICIENT- H=F(T)

Effect of density on the qualitative representation of H vs. T

By fixing the density (exp) or by using a suitable model for water density (TIP4P/2005), the results are qualitatively much improved (H vs. T)

What can be done to quantitatively improve predictions?

HENRY COEFFICIENT- H=F(T)

 Using the Marx model for H₂ (also used by Lazaro et al. 2019, IFPEN) significantly improves the predictions.

$$H_{H_2} = \frac{P * \varphi_{H_2} * y_{H_2}}{x_{H_2} * Poy_{H_2}(P,T)} \quad with: Poy_{H_2}(P,T) = \exp(\vartheta_{H_2}^{\infty} \frac{P - P^{sat}}{RT})$$

$$x_{H_2} = \frac{P * \varphi_{H_2} * y_{H_2}}{H_{H_2} * Poy_{H_2}(P, T)}$$

P: Total pressure $\varphi_{H_2}(T,P)$: fugacity coefficient of H_2 in the vapor phase y_{H_2} : H_2 content in the vapor phase $Poy_{H_2}(T,P)$: *Poynting factor* $\vartheta_{H_2}^{\infty}$: partial molar volume of H_2 at infinite dilution

$\vartheta_{H_2}^{\infty} = f(T)$, It is assumed that $\vartheta_{H_2}^{\infty} \neq f(P)$

- From the literature (available only at T=298.15° C and P=1 bar)
- From molecular simulation

SOLUBILITY (X_{H2}) FROM HENRY COEFFICIENT

Thermodynamics modeling of the $H_2 + H_2O + NaCI system$

I) Symmetric approach (phi-phi)

$$x_i \Phi_i^{Liq} = y_i \Phi_i^{vap}$$

1) Soreide and Whitson (SW) EoS

- Peng-Robinson EoS with different BIPs (T and salinity dependent) for liquid and gas phases and a specific alpha-function for brine.
- Recent parameters from Chabab et al. 2021

II) Asymmetric approach (gamma-phi)

3) Using Henry's constant Liquid

Liquid

$$x_i^{aq} \gamma_i^{aq} H_i^g(T, P^{sat}) \exp\left(v_i^{\infty} \frac{P - P^{sat}}{RT}\right) = y_i^g \varphi_i^g P$$

4) Duan-type model

2) e-PR-CPA EoS

Same Equation of State (EoS) for each phase

 $(\gamma_i) + RTln(x_i) = \mu_i^{\nu(0)}$ $n(v_i P) + RTln(\varphi_i)$

Gas

T = 323.15 K

 $H_{2} + H_{2}O$

 $H_2 + H_2O + 1m NaCl$

29

SOME COMMENTS...

1) Salting-out effect of CH_4 , N_2 , O_2 , and H_2 in 1m NaCl brine

	CH ₄	02	N ₂	H ₂
				17.18 (This work)
100*(1-x _{in brine} /x _{in water})	25.35	25.38	25.24	12.25 (Torín & Trusler 2021)
				24.28 (Chabab et al. 2020)

2) Gas solubility dependencies:

- Intermolecular forces (HB, e.g. CO₂) Molecule size
- Coulombic interactions •

· Polarizability

(To go deeper, see Battino, R., & Seybold, P. G. (2011). The O₂/N₂Ratio Gas Solubility Mystery.

Summary

- Importance of thermophysical properties for UHS
- Impact of density and chemical potential on solubility prediction (MC simulation)
- Different approaches for the calculation of solubility
- Predictive capacity of MS
- Salting-out effect
- Gas solubility dependencies

Upcoming work

- Mixed-gas co-solubility (cushion gas, underground bio-methanation, etc.)
- H₂ diffusivity in brine
- Interfacial tension of H₂/mixed gas with brine (short/medium term)
- Impact of clay (long term perspective)

Thank you for your attention!

Acknowledgements

LaTEP lab (UPPA) Pierre CÉZAC Marie POULAIN Marion DUCOUSSO LFCR lab (UPPA) Guillaume GALLIERO Hai HOANG Halla KERKACHE External collaborators Olivier BAUDOUIN (ProSim) Colleagues from IFPEN Christophe COQUELET (Mines)

Additional slides

Overview of the different types of energy storage

Principal types of underground gas storage

Ref : J.I.T. Force (2016), Underground natural gas storage: Integrity and safe operations

Effect of degassing in geothermal processes:

- Reducing the process efficiency
- pH change : salt (e.g., calcite-CaCO3) scaling
- Causing undesired GHG emissions

- Gas breakout depth
- Working pressure in surface facilities

Submersible pump

First gas bubble formation

APPLICATION TO DEGASSING IN GEOTHERMAL PROCESSES

✓ Duhring lines of equal Gas solubility in different brines

- ✓ Mutual Solubilities of Gas-Brine (Single or Mixed Salts)
- ✓ Mixed-gas cosolubility
- Ref: 1) Chabab, S et al. (2021). Energies, 14, 5239. 2) Chabab, S et al. (2022). EGC 2022, Berlin.

Prediction of :

- Bubble-Point Pressure and
- ✓ GHG Emission Rate (g-eqCO2/kWh) in the Upper Rhine Graben Geothermal Sites

Selected models :

- Phase equilibria : EoS (Søreide and Whitson) with new parameters
- GLR conversion : GERG-2008 for gas, Al Ghafri's correlation for brine *

Guess bubble-point pressure P_E Guess K-values Calculate vapor composition : $y_i = K_i x$ Calculate liquid fugacity : f_i^L (T, P_B , x_i)

Read input data: GLR, T, y_{gas}

Converting GLR to molar ratio : Equation (7) Generating K_i-values : PT-Flash calculation at T and P_G

Liquid composition calculation z₁ : Equation (3) $x_i = z_i$

