Salt crystallization in rocks: probing its physics with X-ray (& neutron) imaging Dr. ir. Hannelore Derluyn CNRS – UPPA Université de Pau & Pays Adour Laboratoire des Fluides Complexes et leurs Réservoirs hannelore.derluyn@cnrs.fr

01 Context & motivation

Salt crystallization in a building context

• Sea spray & marine aerosol:

in-situ XRF analysis:

- Cl: mainly NaCl-induced damage
- Br & Sr: sea is NaCl source

 \Rightarrow salt damage!

Mendonça Filho et al, 2019, *Microchemical Journal* Morillas et al, 2020, *Science of the Total Environment*

Salt crystallization in a building context

a)

• Rising damp:

City Hall, Huesca (Spain)

 \Rightarrow salt damage!

Franzoni, 2014, Construction and Building Materials

Salt crystallization in a geological context

• Natural fractures driven by crystallization pressure under confinement? (Taber, 1916; Wiltschko & Morse, 2001)

Salt crystallization in rocks

Crystallization induces pressure on pore walls

$$p_x = p_{cr} - p_l = \frac{RT}{\overline{V}_{cr}} \ln \frac{a}{a_0} - \sigma_{cr,l} \kappa_{cr,l} - p_c \frac{\Delta \overline{V}}{\overline{V}_{cr}}$$

supersaturation $a(c,T)/a_0(T)$

crystal-liquid surface tension & curvature solubility change in unsaturated conditions

Scherer, 2004, *Cement and Concrete Research* Steiger, 2005, *Journal of Crystal Growth*

How does this propagate in a porous rock?

Diffusive & advective ion transport: $\frac{\partial c}{\partial t} = \nabla \cdot (D\nabla c) - \nabla \cdot (c\vec{v}) + S$

Crystallization kinetics:

$$\frac{\partial R_{cr}}{\partial t} = K \left(\frac{a}{a_0} - 1\right)^g$$

Stoichiometry:

 $\begin{array}{c} \nu_M M + \nu_X X + \nu_0 H_2 O \leftrightarrow \\ M_{\nu_M} X_{\nu_X} \cdot \nu_0 H_2 O \end{array}$

Poromechanical response:
$$p_c$$

 $\mathbf{\sigma}_s = D(\mathbf{\epsilon} - \mathbf{\epsilon}_T) - b \int_{p_{c,ref}} (S_l + S_{cr}) dp_c \mathbf{I}$
 $-bS_{cr}(p_x - p_{x,ref}) \mathbf{I}$

Salt crystallization in rocks

Crystallization induces pressure on pore walls

Derluyn, 2012, PhD thesis

How does this propagate in a porous rock?

• Transport – precipitation - mechanics

02 Drying-induced NaCl-damage

lab X-ray tomography final dry state

- real experiment: 607 min.
- movie: 25700 x faster; looped ٠

Image quantification & poromechanical prediction

Derluyn et al, 2013, J Build Physics Derluyn et al, 2014, J Mech Phys Solids Derluyn et al, 2019, Transport in Porous Media

Looking deeper

• X-ray & neutron tomography (µCT):

- \Rightarrow main horizontal crack following crystal precipitation
 - + secondary cracks

Looking deeper

• Time-resolved X-ray μCT:

Derluyn et al, in preparation

03 Rewetting-induced Na₂SO₄damage

• Vosges sandstone during capillary rise – 3D evaporation inducing crystallization pressure due to thenardite – mirabilite transition:

40 mm

Okumko et al, in preparation

Flatt, 2002, *Journal of Crystal Growth* Shahidzadeh et al, 2010, *Physical Review E*

X-ray – neutron µCT comparison

 \Rightarrow "vertical" evaporation front = vertical "scaling" cracks \Rightarrow "horizontal" evaporation front \neq horizontal cracks

X-ray µCT analysis

• Digital volume correlation: volumetric strain

⇒ largest deformations and cracking correspond to
(1) zones of salt precipitation close to surface
(2) mechanically weaker zones

04Rewetting-induced Na2SO404damage under reservoir
conditions

• Adamswiller sandstone with a localized Na₂SO₄ zone inducing crystallization pressure due to thenardite – mirabilite transition:

No confining pressure

• Acoustic emission:

Confined at 10 MPa (-400 meter)

• Acoustic emission:

⇒ crystallization pressure also works under confined reservoir conditions! (B. Leclère, 2021, PhD Thesis)

05 Conclusions

Conclusions

- Through non-destructive and time-resolved imaging techniques we can reconstruct the story of salt crystallization and its hydromechanical processes inside rocks
- Seal-crack versus crack-seal: reality is more complex
 - damage not only where crystals precipitate
 - crystallization needed for crack initiation
 - crack propagation also in mechanically weaker layers of heterogeneous rock or as secondary cracks due to differential stresses
 - seal-crack also occurs under confinement

Second call closes 31st August 2022 https://excite-network.eu/excite-transnational-access-call-open/

National access: IMAGINE² **First call expected end of 2022**

Thanks to LFCR salt collaborators:

V. Okumko

S. Ben Elhadj Hamida

T. Chekai

V. Combaudon

Dr. K. Kularatne

Prof. J.P. Callot

F. F. Mendonça Filho

Dr. B. Leclère

Dr. F. Thierry

Thank you for your attention!

