Salt crystallization in rocks: probing its physics with X-ray (& neutron) imaging

Dr. ir. Hannelore Derluyn
CNRS – UPPA Université de Pau & Pays Adour
Laboratoire des Fluides Complexes et leurs Réservoirs
hannelore.derluyn@cnrs.fr
01 Context & motivation
Salt crystallization in a building context

• Sea spray & marine aerosol:

Villa Belza, Biarritz (France)

⇒ salt damage!

in-situ XRF analysis:

- Cl: mainly NaCl-induced damage
- Br & Sr: sea is NaCl source

Mendonça Filho et al, 2019, Microchemical Journal
Morillas et al, 2020, Science of the Total Environment
Salt crystallization in a building context

- Rising damp:

 \(\text{Na}_2\text{SO}_4 \)

City Hall, Huesca (Spain)

⇒ salt damage!

Franzoni, 2014, *Construction and Building Materials*
Salt crystallization in a geological context

- Natural fractures driven by crystallization pressure under confinement? (Taber, 1916; Wiltschko & Morse, 2001)

Tectonic stress driven crack propagation?

Hydraulic fracturing driven crack widening/propagation?

Crystallisation driven crack widening/propagation?
Salt crystallization in rocks

Crystallization induces pressure on pore walls

\[p_x = p_{cr} - p_l = \frac{RT}{V_{cr}} \ln \frac{a}{a_0} - \sigma_{cr,l} \kappa_{cr,l} - p_c \frac{\Delta V}{V_{cr}} \]

supersaturation \(a(c,T)/a_0(T) \)
crystal-liquid surface tension & curvature
solubility change in unsaturated conditions

Scherer, 2004, Cement and Concrete Research
Steiger, 2005, Journal of Crystal Growth

How does this propagate in a porous rock?

Diffusive & advective ion transport:
\[\frac{\partial c}{\partial t} = \nabla \cdot (D \nabla c) - \nabla \cdot (c \vec{v}) + S \]

Crystallization kinetics:
\[\frac{\partial R_{cr}}{\partial t} = K \left(\frac{a}{a_0} - 1 \right)^g \]

Stoichiometry:
\[\nu_M M + \nu_X X + \nu_0 H_2O \leftrightarrow M_{\nu_M}X_{\nu_X} \cdot \nu_0 H_2O \]

Poromechanical response:
\[\sigma_s = D(\epsilon - \epsilon_T) - b \int (S_l + S_{cr})dp_c I \]
\[-bS_{cr} (p_x - p_{x,ref}) I \]
Salt crystallization in rocks

Crystallization induces pressure on pore walls

Derluyn, 2012, PhD thesis

How does this propagate in a porous rock?

- Transport – precipitation - mechanics

Image courtesy: NIAG group, PSI
02 Drying-induced NaCl-damage
Experimental protocol

lab X-ray tomography
initial dry state
Experimental protocol

lab X-ray tomography
initial dry state

capillary uptake @ room T of
5.8 molal NaCl-solution
Experimental protocol

lab X-ray tomography
initial dry state

neutron radiography of 1D saline drying @ 45°C – 5% RH

evaporation

lab X-ray tomography
final dry state

- real experiment: 607 min.
- movie: 25700 x faster; looped
Image quantification & poromechanical prediction

Derluyn et al, 2013, *J Build Physics*
Derluyn et al, 2019, *Transport in Porous Media*
Looking deeper

• X-ray & neutron tomography (μCT):

⇒ main horizontal crack following crystal precipitation
 + secondary cracks
Looking deeper

• Time-resolved X-ray μCT:

Derluyn et al, in preparation
Rewetting-induced Na$_2$SO$_4$-damage
Experimental protocol

• Vosges sandstone during capillary rise – 3D evaporation inducing crystallization pressure due to thenardite – mirabilite transition:

15

Okumko et al, in preparation
X-ray – neutron μCT comparison

⇒ “vertical” evaporation front = vertical “scaling” cracks
⇒ “horizontal” evaporation front ≠ horizontal cracks
X-ray – neutron μCT comparison
X-ray μCT analysis

- Digital volume correlation: volumetric strain

⇒ largest deformations and cracking correspond to
 (1) zones of salt precipitation close to surface
 (2) mechanically weaker zones
Rewetting-induced Na_2SO_4-damage under reservoir conditions
Experimental protocol

- Adamswiller sandstone with a localized Na_2SO_4 zone inducing crystallization pressure due to thenardite – mirabilite transition:

A) sample after injection of 4 ml of solution ($2.8 \text{ m Na}_2\text{SO}_4$)

B) sample impregnated with thenardite

C) after imbibition with pure water
No confining pressure

• Acoustic emission:
Confined at 10 MPa (-400 meter)

- Acoustic emission:
X-ray μCT comparison

no confining pressure

confined at 10 MPa

⇒ crystallization pressure also works under confined reservoir conditions! (B. Leclère, 2021, PhD Thesis)
Conclusions
Conclusions

• Through non-destructive and time-resolved imaging techniques we can reconstruct the story of salt crystallization and its hydro-mechanical processes inside rocks

• Seal-crack versus crack-seal: reality is more complex
 • damage not only where crystals precipitate
 • crystallization needed for crack initiation
 • crack propagation also in mechanically weaker layers of heterogeneous rock or as secondary cracks due to differential stresses
 • seal-crack also occurs under confinement
Transnational access: **Excite Network**

Second call closes 31st August 2022
https://excite-network.eu/excite-transnational-access-call-open/

National access: **IMAGINE2**
First call expected end of 2022
Thanks to LFCR *salt* collaborators:

V. Okumko
S. Ben Elhadj Hamida
T. Chekai
V. Combadon
Dr. K. Kularatne
Prof. D. Grégoire
Prof. J.P. Callot
F. F. Mendonça Filho
Dr. B. Leclère
Dr. F. Thierry

Thank you for your attention!