

PVT pour les fluides non-conventionnels de type pre-salt

José Francisco Romero Yanes, Chih-Wei Lin, Hosiberto Batista de Sant'Ana, Jérome Pauly, Magali Pujol, Julien Collell, Felipe Fleming, Jean-Patrick Bazile, Djamel Nasri, François Montel, Hervé Carrier, Jean-Luc Daridon

BRAZILIAN PRE-SALT FLUIDS

PHASE BEHAVIOR OF RESERVOIR FLUIDS

energy of the second se

Conventional PVT techniques : Synthetic method

Challenges

Sensor in full immersion

$\checkmark\,$ Multi-scale observation for both fluid and solid phases

 $\succ L \rightarrow L + V : mm$ $\succ L \rightarrow L + L : mm \text{ to } \mu m$ $\succ L \rightarrow L + Wax : 0.5 \ \mu m$ $\succ L \rightarrow L + Asphaltenes: 50 \text{ nm}$

✓ High opacity

Indirect detection of phase transitions :

✓ Complex phase behavior

Direct observation : Fluids : full sample (stirring)
HP full visibility cell

Solids : focalization on a small sample (static) HP microscopy

Combined Investigation

Indirect detection method : QCR sensor (QCM)

QCR sensor in full oil immersion

3rd

Oil with unstable Asphatenes

0.03

0.025

0.02

S 0.015

0.01

0.005

0

8700000

Device

P: 0.1 – 100 Mpa
T: 0 – 100 C
V: 20 – 50 cm³

Fluid phase transitions using QCR

Constant Mass Expansion ($CO_2 + nC_{17}$)

 $\Delta f_{n,oil} = -\sqrt{n} \frac{C_m}{\sqrt{\pi f_0}} \sqrt{\rho_{oil} \eta_{oil}} - n2C_m \rho h_D$

CME

31/08/2022

Fluid phase transitions using QCR

- > The minimum is in good agreement with the observed break in the PV curve.
- > QCR is more sensitive than PV method.

QCR cannot detect LL phase separation

31/08/2022

Wax Appearance Temperature measurement using QCR

Constant Mass Cooling

Live oil : 400 bar

- Wax precipitation leads to an increase of viscosity
- No mass deposition on quartz surface

$$\sqrt{\rho\eta_{\text{fluid}}}$$
 / Δf_{fluid} $\Delta \Gamma_{\text{fluid}}$ /

$$\Delta f_{n,oil} = -\sqrt{n} \frac{C_m}{\sqrt{\pi f_0}} \sqrt{\rho_{oil} \eta_{oil}} - n2C_m \rho h_D$$

$$\Delta\Gamma_{n,oil} = \sqrt{n} \frac{C_m}{\sqrt{\pi f_0}} \sqrt{\rho_{oil} \eta_{oil}} (1+R)$$

Direct observation

Under visible light, crude oils absorb most of the radiation and appear as dark fluids

Transmittance of a material is a function of the:

- \succ thickness of the sample
- > wavelength of the incident light

in situ observation of phase transitions is limited.

avy oil

1,500

2,000

Medium oil

1,000

Wavelength (nm)

Optical density

OBM filtrate 500

Visual \longrightarrow **Infra Red :** 1 - 2 μ m,

SWIR

PVT CELL with SWIR CAMERA

Device

- Fixed focal 12.5 mm length lens
- long working distance objective lens

o x4

o x8

PVT CELL with SWIR CAMERA

LV / LL / LLV

P, x phase diagram of Recombined gas + PS oil

Asphalt / Bitumen

31/08/2022

Device

HP Microscopy + SWIR camera

LL / LLV

Conclusion

Combined Investigation using 3 devices

Full characterization of PS oil in reservoir conditions

Conclusion

Characterization of gas injection

31/08/2022

Conclusion

Characterization of gas injection

Merci de votre attention

31/08/2022

jean-luc.daridon@univ-pau.fr